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because the centre point of each of the pentagonal 
'dimples' constitutes an infinitesimally narrow tunnel 
giving access to a central icosahedral cavity. 

The topological concept of genus is most simply 
appreciated as a generalization of Euler's rule (Ball, 
1959): if F, V and E are the numbers of faces, vertices 
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Fig. 4. The vertex figure. The points of intersection of the 
dodecahedral edges with the plane are circled to indicate 
the type of edge, as in Fig. 1. Also shown are the correspond- 
ing reciprocal lines, which form the edges in the face-plane 
of the icosahedron. 

and edges of the polyhedron then its surface is of genus 
½ ( 2 + E - F - V ) .  If the genus is zero the surface is 
simply connected, i.e. deformable into a sphere. For 
compound facetions the formula must be applied to 
the component polyhedra individually. A face of which 
the edges form n distinct chains must be counted n 
times, as must a vertex with n distinct chains of edges 
in its vertex polygon. 

Thus it appears that 44 of the '59 icosahedra' 
(Coxeter et al., 1938) have no reciprocals. In all of 
these it is impossible to describe the face by a polygon 
which satisfies rule 5, so that any attempt at reciproca- 
tion gives a figure with more than two faces meeting 
along some edges. It is interesting that of the dual pair 
of rules 4 and 5, 5 is trivial for facetted dodecahedra 
while 4 is intuitively obvious but in stellating the ico- 
sahedron it is 4 which is trivial while 5 is not obvious 
at all. 

References 

BALL, W. W. R. (1959). Mathematical Recreations and Es- 
says, 1 lth ed., revised by H. S. M. COXETER, p. 233. Lon- 
don: Macmillan. 

COXETER, H. S. M. (1963). Regular Polytopes, 2nd ed., pp. 
93-100. London: Macmillan. 

COXETER, H. S. M., Du VAL, P., FEATHER, H. T. & PETRIE, 
J. F. (1938). The Fifty-nine Icosahedra. Univ. of Toronto 
Press. 

Acta Cryst. (1974). A30, 552 

Interpretation of the 10/~ Rotation Function of the Satellite Tobacco Necrosis Virus 

BY PAUL J. LENTZ JR AND BROR STRANDBERG 

Wallenberg Laboratory, University of  Uppsala, Uppsala, Sweden 

(Received 19 February 1974; accepted 18 March 1974) 

The rotation function calculated with 10 A three-dimensional data from monoclinic crystals of the 
satellite tobacco necrosis virus was fitted numerically to an icosahedral axis set. The r.m.s, angular 
deviation of the observed peak maxima from the calculated model axis set was 0.67 ° and the largest 
deviation was 1.4 °. Thus, there is no significant deviation from icosahedral symmetry at 10 A resolu- 
tion. An investigation of the effects of the data inclusion limits and the radius of integration on the 
resolution of neighboring peaks in the rotation function showed that the best resolution was obtained 
by using only a thin shell of the highest-resolution data available and a radius of integration no larger 
than the estimated diameter of the virus protein subunit. 

Introduction 

The crystallization of a virus, the tobacco mosaic virus, 
was first reported by Stanley (1935). Soon thereafter 
a number of small spherical plant viruses were crys- 
tallized and in 1944 X-ray diffraction patterns were 
obtained from dried crystals of a very small virus-like 
particle then called 'derivative' or 'protein' of the to- 
bacco necrosis virus (TNV, Crowfoot & Schmidt, 
1945). The particle was about one-third the molecular 
weight of TNV with which it was associated during 

infection and was thought to be a byproduct of in- 
fection rather than a separate virus. It is now recognized 
as the satellite tobacco necrosis virus (STNV) which, 
although antigenically unrelated to TNV, requires si- 
multaneous co-infection by TNV in order to produce 
progeny (Kassanis & Nixon, 1961). 

Crick & Watson (1956) proposed that the structural 
protein coat of small spherical viruses was made up 
of a number of identical subunits packed with cubic 
point symmetry to form the virus surface. This theory 
was formalized and extended by Caspar & Klug (1962) 
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who concluded that the icosahedral point group, 532, 
was much preferred for enclosing a volume with a sur- 
face composed of relatively small protein subunits in 
identical local environments. Exact icosahedral point 
symmetry allowed only 60 subunits (as is the case for 
STNV) in the shell; however, they proposed that this 
'subunit' could itself be composed of several identical 
subunits which would be packed in 'quasi-equivalent' 
environments. The theory has been repeatedly con- 
firmed by electron microscopic and X-ray diffraction 
studies on small viruses and their crystals (e.g. Klug, 
Longley & Leberman, 1966). 

An attempt is being made to solve the structure of 
STNV at high resolution by either the isomorphous 
replacement (Green, Ingram & Perutz, 1956) or mo- 
lecular replacement methods (Rossmann & Blow, 
1963). The former involves the preparation of iso- 
morphous heavy-atom derivatives of the virus and the 
determination of the positions of those heavy atoms in 
the crystal. Heavy atoms attached specifically to the 
coat protein would have the same symmetry as the 
protein shell and that high symmetry would then faci- 
litate a solution for the positions by either, (1) a brute- 
force trial-and-error search of the 'asymmetric volume' 
of the protein coat region, testing each possible po- 
sition by generating the symmetry-related set and com- 
paring calculated structure factors for the set with the 
observed [AFI set for a specific trial derivative, or (2) 
comparison of the observed heavy-atom difference Pat- 
terson function with a calculated vector set (Nordman 
& Nakatsu, 1963), again by a systematic search of 
the 'asymmetric volume' of the protein region and 
generation of the particle symmetry related set to use 
to generate the vector set. The molecular replacement 
method depends on real or reciprocal-space averaging 
to generate or improve phases when the crystallographic 
asymmetric unit possesses a known point symmetry. 
Both methods depend very much on a precise know- 
ledge of the locations of the symmetry axes. 

The non-crystallographic symmetry in X-ray dif- 
fraction patterns from virus crystals has been analyzed 
by two approaches; inspection of the direct or weighted 
X-ray diffraction pattern (Caspar, 1956) and analysis 
by superposition methods of the Patterson function 
obtained from the diffraction data (/~kervall et al., 
1971,pp. 469-483). Analysis of virus symmetry by 
direct inspection of precession films is facilitated when 
a number of the virus particle symmetry axes are si- 
tuated within a few degrees of the observed reciprocal- 
lattice plane. The symmetry is manifested in a series 
of 'spikes' of intense reflexions radiating from the lat- 
tice origin. The angular relations between those spikes 
allow assignment of the symmetry of each spike and 
the orientation of the particle with respect to the crystal 
axes. Although the method is most easily applied when, 
as is the usual case for the small spherical viruses, the 
particle lies on a special position in the lattice such 
that one or more of the particle symmetry axes are 
incorporated in the crystal symmetry, it has also been 

successfully applied to crystals of broad bean mottle 
virus (Finch, Leberman & Berger, 1967) where there are 
two complete particles per asymmetric unit. 

The second method, analysis of the Patterson func- 
tion by means of the rotation function (RF; Rossmann 
& Blow, 1962) was used for the STNV study. The RF 
has been used with many protein crystal data sets to 
locate non-crystallographic symmetry axes within a 
crystallographic asymmetric unit, for example, the non- 
crystallographic dyads in rhombohedral insulin crys- 
tals (Dodson, Harding, Hodgkin & Rossmann, 1966) 
and in monoclinic c~-chymotrypsin (Blow, Rossmann 
& Jeffrey, 1964) crystals, both of which were subse- 
quently confirmed by the high-resolution structure de- 
terminations. 

However, when the RF was calculated with 15 A 
three-dimensional STNV data (Akervall et al., 1971, 
pp. 469-483) the rather large number of poorly resolved 
peaks and the dominance of the calculation by extra 
peaks resulted in a misinterpretation in favour of octa- 
hedral symmetry. The results were subsequently reinter- 
preted (Klug, 1971; Akervall et al., 1971, pp. 487- 
488) as being consistent with icosahedral particle sym- 
metry. 

The purposes of the study reported here were, (1) 
to determine conditions for calculating the RF with 
better peak resolution and, (2) to refine the particle 
orientation to obtain sufficient precision to use for 
interpreting heavy-atom difference Patterson functions 
and/or for symmetry averaging electron density maps. 

Experimental 

The virus crystals were grown on a small plateau in 
a thin-walled glass capillary by feeding concentrated 
virus solution to a small seed crystal placed on the 
plateau (,~kervall & Strandberg, 1971). When the crys- 
tals had grown to be wedged into the capillary, they 
were drained and the ends of the capillary sealed with 
wax with the usual precaution of leaving some mother 
liquor in the tube to maintain vapor pressure. The 
crystals were plates generally 0-25 mm thick and 1.5 
mm long wedged in 1.0-1.5 mm diameter capillaries. 
The 10/k data set consisted of 29 single-layer,/z=5 ° 
precession-film sets taken with a Buerger-Supper pre- 
cession camera at a crystal-to-film distance of 100 mm. 
The X-ray source was an Elliott GX6 rotating anode 
tube operated at 2.8 kW giving a 0.2 mm square viewed 
source. A copper anode and a nickel-foil filter were 
used. The intensities were measured with an automatic 
analogue-integrating microdensitometer constructed 
by Dr V. Klimecki of the Chemistry Department, 
University of Uppsala, Sweden. The data set was 90 % 
complete to 12A resolution and 70% complete to 
10 A; reflexions beyond 10 A were excluded from all 
calculations. No correction was made for absorption. 
A collimator with a 0.25 mm circular aperture was 
used for most films although some layers required a 
0" 15 mm aperture collimator to ensure spot separation. 
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No correction was made for differences in scattering 
volume for different reflexions on the same layer owing 
to the precession of the crystal in a beam smaller 
than the crystal. Calculations indicated that the maxi- 
m u m  volume change was 10% for any one layer at 
/ z=5  °. 

The rotation function 

The rotat ion function is a product function of two 
Patterson functions with superposed origins; one is 
held stationary and the other rotated about the three 
angles necessary to acheive any general orientation. 
The Patterson functions are the same when looking 
for non-crystallographic symmetry within an asym- 
metric unit or from different data sets when looking 
for the angular  relationship between different asym- 
metric units. For computat ional  purposes the R F  may 
be expressed as 

R(x,~/,tp) = ~ IFplZ( ~ IF,,I z ahp) 
p h 

where R(x,~,, ~) is the value of the function when the 
two Patterson functions are related by a rotation matr ix 
[C] defined by the angles tc,~u, tp and Ghp is a diffraction 
function dependent on the volume around the origin 
to be searched (the ' radius of integration') and on the 
argument  

H=(h+[~2 ]p ) .  

As H goes to zero, Ghp goes to one; as H goes to in- 
finity, Ghp goes to zero. 

To observe the symmetry elements within a virus 
particle and to minimize the effects from cross-vector 
between particles, the m a x i m u m  length of the vectors 
incorporated in the calculation is generally somewhat  
less than the anticipated diameter of the asymmetric  
unit. In most reports on the use of the R F  the data 
used, suitably modified to remove the origin, extends 
from the origin or a rather low cut-off angle (fre- 
quently not specified) out to some intermediate res- 
olution, often 4 to 6 A, which is usually adequate to 
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Fig. 1. STNV rotation function sections of constant x = 180 °. (a) to (c) All data to 10 A resolution, 476 terms in the large-term 
Patterson function; radii of integration, (a) 155 A, (b) 100 A, (c) 50 A. (d) to (f) Data between 30 and 10 A, 575 terms in the 
large-term Patterson function; radii of integration, (d) 155 A, (e) 100 A, (f) 50 A, (g) to (i) Data between 12-3 and 10 A, 477 
terms in the large-term Patterson function; radii of integration, (g) 155 A, (h) 100 A, (i) 50A. In this and subsequent x=  180 ° 
sections, the symmetry axes are located at the intersection of like-coloured great circles. Continuous lines refer to great circles 
joining twofold axes of the front smface of one icosahedron; dashed lines, to those on the front surface of the crystallo- 
graphically related icosahedron. 
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resolve unambiguously the peak maxima. To mini- 
mize computation time only a fraction, frequently about 
10%, of the largest reflexions in several resolution 
shells is used for calculating the rotated ('large term') 
Patterson function; the other includes all the data. 

Sources of the peaks in the STNV rotation function 

There are three attributable types of non-origin peaks 
in the RF from STNV data; those due to non-crys- 
tallographic symmetry elements of each individual par- 
ticle in the cell, those due to non-crystallographic sym- 
metry elements relating the self-vector sets of the in- 
dividual particles, and those due to packing of the 
particles into the C2 crystal lattice which at very low 
resolution (ca. 40 A_) is pseudo-face-centred, 'F222'. 
The heights and to some extent the locations of the 
peak maxima of all three types are affected by both 
the resolution of the data included and by the integra- 
tion radius of the individual RF calculation. 

Choice of parameters for the rotation 
function calculation 

/~kervall et al. (1971) had observed a significant im- 
provement in the resolution of the RF when they si- 
multaneously reduced the radius of integration, in- 

cluded data to a somewhat higher resolution, and ex- 
cluded very low resolution data. However, they did 
not report the effects of these measures taken sepa- 
rately. A series of constant K rotation function sections 
were calculated to study the effect of each of the par- 
ameters. 

(1) The effect of  the integration radius 
A series of K=180 ° sections calculated with 155, 

100, and 50 A integration radii for each of three res- 
olution limits is shown in Fig. 1. The arcs are great 
circles connecting particle twofold axes and indicate 
the best fit discussed later. At all three limits the re- 
duction of the integration radius causes some improve- 
ment in the apparent peak resolution, although the 
major change is achieved in the step from 155 to 100 A 
and a further decrease has less effect. The result of 
reducing the radius is a qualitative decrease in the 
overall background level rather than an improvement 
in resolution or a change in the relative peak heights. 

The radius of the STNV particle is known to be 
about 85 A from electron microscopic studies (Frid- 
borg et al., 1965). Thus, in the earlier STNV study 
an integration radius of 155 A was used, expecting 
thereby to limit the calculation primarily to intrapar- 
ticle vectors. In retrospect it is apparent that such a 
radius includes a large number of cross-vectors and 
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Fig. 2. STNV rotation function sections for thin shells of intermediate resolution data. (a) and (b) Data between 15 and 12-3/~ 
resolution, 268 terms in the large-term Patterson function, 50/~ radius of integration. (a) Jc = 180 °, (b) x = 120 °. (c) and (d) Data 
between 20 and 15/~ resolution, 196 terms in the large-term Patterson function, 50/~ radius of integration. (c) x= 180 °, (d) 
t¢ = 120 °. 
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that the integration radius must be decreased to some- 
what closer to the subunit diameter (30 to 60 A) to 
limit the calculation to intersubunit vectors. The desired 
symmetry is that of the set of subunits forming the 
viral outer shell rather than that of the entire particle. The 
overall particle symmetry in the crystal depends on 
the degree to which the viral ribonucleic acid is ordered. 
We have not yet been able to detect to what degree, 
if any, the nucleic acid is ordered, however, if it were 
ordered and packed asymmetrically in the virus, it 
might well be one source of the 'noise' in the 155 A 
radius calculation. 

(2) The effect of  the data resolution limits 
Figs. 1 and 2 show a series of sections calculated 

with a 50/~ radius of integration radius and a variety 
of upper and lower limits on the resolution of data in- 
cluded. The most obvious effects of varying the limits 
are that removing the very low angle reflexions elimi- 
nates the pseudo-origin peaks at ~ = 90 o, ~p = 0 o and 
90 ° (=270 ° ) and that the addition of higher-angle 
reflexions leads to increasingly better resolution be- 
tween adjacent particle symmetry peaks provided that 
the inner terms are also eliminated. At the extreme 
where only the 12.3 to 10/~ reflexions were used, all 
particle peaks in the x =  180 ° section are resolved. 
Sharpening of the RF by removing the low resolution 
data was suggested by Rossmann & Blow in the ori- 
ginal paper on the method (Rossmann & Blow, 1962). 
It is analogous to looking at the distribution of the 
strong reflexions in the highest resolution shell of dif- 
fraction data to see if the 'spikes' and thus, the particle 
symmetry, persist to the resolution limit. 

All the RF calculations were initially done at 5 ° 
intervals in ~ and tp. However, as higher resolution data 
was added, the peaks became so compact as to fall 
between the grid interval, and the observed peak heights 
were a function of the distance of the nearest grid 
point from the true peak maximum rather than of the 
amount of overlap between the Patterson functions. 
Additional grid points at 1 o intervals were calculated 
around each of the particle symmetry-axis locations to 
establish the peak locations and heights. The three 
sections in Fig. 3 have been augmented with the extra 
points. In estimated standard deviations above the 
mean, the mean particle symmetry peak height for non- 
overlapped peaks was 3.6, the minimum was 2.8 and 
the maximum was 4,6. There was no obvious cor- 
relation of peak height with the symmetry type of the 
axis. 

Numerical fit of an icosahedron to the STNV 
rotation function 

To obtain the best fit of an icosahedral symmetry 
axis set to the RF and to estimate the precision of 
that fit a computer program was written which com- 
pared the location of the known peak maxima with 
the location of a model set of symmetry axes rotated 

through an Eulerian angle set. The model axes set 
consisted of the direction cosines of the symmetry axes 
of an icosahedron which were determined by simple 
geometry (cf. International Tables for X-ray Crystal- 
lography, 1967). Two criteria of fit were calculated. The 
first was the absolute spherical angular separation, ~, 
between the model axes and the observed peak maxima. 
The angle is given by Rossmann, Ford, Watson & 
Banaszak (1972) as, 

cos ~ = sin ~obs sin ~calc c o s  ((ffobs--~calc) 
+ COS ~obs COS ~/caZc • 

The best fit was taken to be that set of the three Eulerian 
angles (01,02,03) which gives the lowest root-mean- 
square angular deviation, r.m.s, c~, which is given by, 

11 

r.m.s. ~=(~2/n)i/2. 
The sum is over the 31 independent peak locations. 
The second criterion depended upon the value, R, of 
the RF at the positions of the rotated model axes, 
that value being generated by linear interpolation r~sing 
the three nearest points in the calculated grid. The best 
fit by this criterion was that set of angles which gives 
the lowest root-mean-square difference between R at 
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Fig. 3-Augmented rotation function sections for the 12.3 to 
10 A data shell. 477 terms in the large-term Patterson func- 
tion, 50/~ radius of integration, (a) x= 180 °, (b) x= 120 °, (c) 
tc = 72 °. In (b) and (c) the filled symmetry elements are dis- 
placed so as not to obscure the peaks. (d) shows the ~0 and ~, 
angles in relation to the crystal axial system. (e) Stereo- 
graphic projection down [100] of the front halves of the 
axial systems of the two icosahedra related by the two fold 
axis parallel to b. The vertical dotted line marks the ~0=0 ° 
line, the horizontal dotted line marks the ~ =90 ° line. 
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the model axis locations and R at the calculated peak 
maxima. The difference is normalized to avoid biasing 
the heavier peaks. The r.m.s. A R  is then 

zJR ~ 2 1/2 

This interpretation of the RF in terms of the fit of a 
known symmetry axis set is very similar to the 'locked 
rotation function' used by Rossmann et al. (1972) on 
the RF from glyceraldehyde phosphate dehydrogenase 
crystal data. The main differences are the criteria for 
evaluating the fit and the thoroughness of the search. 
Rossmann et al. searched the entire x =  180 ° section 
to find the best fit to a 222 axis set, while in this study 
the proper symmetry relationship of the peaks in the 
RF had been determined previously and it was neces- 
sary only to refine the fit. 

Beginning with the model axis oriented in the cell 
such that three of the model twofold axes are parallel 
to a*, b, and e as in Fig. 4(a), the orientation angles 
are: 01, rotation about t(3, the axis parallel to ¢; 02, 
rotation about the rotated axis )(1, which was originally 
parallel to a*; 03, rotation about the rotated axis )(3, 
which started parallel to e. All rotations are clockwise 
looking down the axes toward the intersection of the 
axes. 

The fit criteria were calculated for a three-dimen- 
sional grid with an interval of 0.1 ° along each grid 
direction. Fig. 5 shows two intersecting planes through 
what was found to be the best fit, on the basis of a 
minimum r.m.s. 3, for each of the two criteria. The 
r.m.s. ~ gave a single minimum of 0.67 o at 01 = -70 .3 ,  

0 2 = -  14.4, 03=22.0 °. The largest deviation was 1.4 °. 
The single minimum in r.m.s. A R  was at 01 = - 7 0 . 3 ,  
02 = -14 .5 ,  03=22.0 °. As the r.m.s. ~ was less than 
the sampling interval and therefore the fit might be 
limited by the RF grid interval rather than the inherent 
angular error, the calculation was repeated with an 
RF grid calculated at 0.5 o intervals and the orientation 
angles scanned in 0.05 o intervals. The best point was 
found at 0 1 = - 7 0 . 3 0 ,  0 2 = - 1 4 . 3 5 ,  03=22.00 °, r.m.s. 
3=0.67 ° . The lack of change suggests that we have 
the best fit possible at this resolution. 

Fig. 4 shows 85/~ radius icosahedra in the STNV 
lattice, (a) in the standard orientation before rotation, 
(b) rotated to the best fit angles obtained above, (c) a 
diagram of several cells with the icosahedra positioned 
(Rossmann, Akervall, Lentz & Strandberg, 1973) and 
oriented properly. 

Error in symmetry-related positions 

If a point at x is rotated by a particle twofold axis to a 
point x' and the angular error in the axis location is 
3, then the angular error between x' and the point x"  
to which x would be rotated by the 'correct' axis po- 
sition is 23. Using the particle symmetry-axis locations 
from the best fit to generate symmetry-related sites in the 
virus, then a J of 0-67 o would result in an error of 1.3 o 
in related positions. At a radius of 85/~ this corres- 
ponds to an error of 1.9 A. As that is less than one 
fifth the resolution at 10 A, we believe that the axes 
are located with sufficient precision for the above-men- 
tioned calculations. 

(a) (b) 

(c) 

Fig. 4. ORTEP (Johnson, 1965) drawings of icosahedra in the crystal lattice (a) before rotation, (b) after rotation to the best fit 
angles, (c) Packing diagram of 85/~ ladius (centre to vertex), icosahedra properly oriented and positioned in the crystal 
lattice. As the ,8 angle is 94.6 ° in this cell, a* is very nearly parallel to a and it was not included in the diagram, xx in (a) is 
parallel to a*. 
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The extra peaks in the STNV rotation function 

Although there is no general theory for the prediction 
of extra symmetry peaks in the RF (Rossmann, 1973), 
this and earlier studies on STNV indicate some likely 
sources of those peaks. We have observed, (1) packing 
peaks caused by the dominance of the RF by very 
low order reflexions which show additional pseudo- 
symmetry and, (2) extra non-crystallographic sym- 
metry accompanied by overlapping non-crystallo- 
graphic peaks from particles related by a crystal- 
lographic axis. Examples of the first type have been 

mentioned earlier as being due to the pseudo-F222 
symmetry of the reflexions with spacings greater than 
40 A. Extra 'origin' peaks are generated at V=90  °, 
~0 = 0 and 90 °. In the STNV RF they are eliminated by 
excluding reflexions with spacing greater than 30 A. 
Extra peaks of the second type occur when the RF 
calculation is dominated by reflexions from spacings 
too coarse to resolve nearby particle non-crystallo- 
graphic symmetry peaks. This may be due either to 
the inclusion of too much lower resolution data or to 
the lack of higher resolution terms. Using the 30 to 
12.3 ,~ data a number of extra and overlapped peaks 
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Fig. 5. Sections through the minima in the three-dimensional plots of the two fit criteria defined in the text. (a) and (b) are, re- 
spectively, constant 0a and 0t sections through the plot of r.m.s. 6. (c) and (d) are constant 03 and 0~ sections through the plot 
of r.m.s. AR. 



PAUL J. L E N T Z  JR A N D  BROR S T R A N D B E R G  559 

,. " ~  

. .  

occur only because of the inclusion of the lower reso- 
lution terms (Aker~all et al., 1971, pp. 487-488). Using 
only the 15 to 12.3 A shell, Fig. 2(a) and 2(b), all 
particle peaks are resolved except the threefold axes 
at V=90°,  ~=158o (=338o). Even the 20 to 15A 
shell, Fig. 2(c) and 2(d), is sufficient to resolve one of 
the threefold axis overlaps which had been present 
with the 30 to 12.3 .A data. With the 12.3 to 10 A data 
all particle peaks are well resolved exept the threefold 
axes at ~,=90 °, fo= 158 °. This lack of resolution of 
the threefold axes means that on the line perpendicular 
to those axes, that is, tp = 68 o (=  248 °), and at an angle 
of 120 ° from b or - b ,  that is ~u=60 and 120 °, there is 
apparent two fold symmetry near the origin in the 
Patterson function and, thus, an extra symmetry peak 
on the x = 180 ° section. Recalculation of the numerical 
fit as above without the overlapped threefold-axis peak 
showed that those axes are within 0.6 o of superposition 
at the best fit angles. 

Conclusions 

The rotation function of STNV can be readily inter- 
preted even with rather low resolution data providing 
conditions are chosen which emphasize the intersubunit 
vectors and minimize the lattice packing effects. With 
STNV data this was achieved by decreasing the in- 
tegration radius and working with a thin shell of the 
highest resolution data available. Requiring the simul- 
taneous fit of a large number of compact, well resolved 
peaks results in a high precision in the orientation 
angles. The low r.m.s, angular deviation indicates that 
the particle symmetry does not deviate from icosahe- 
dral at this resolution. 
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